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A fourth-order quadrupole boson HamiltonianH is treated semiclassically through a time-dependent varia-
tional principle. The variational functions are coherent states for boson operators. In the parameters space of
H there are regions, conventionally called ‘‘nuclear phases,’’ determining specific static properties. Several
ground states corresponding to different equilibrium shapes are found as static solutions of classical equations
of motion. The mechanism of destroying the tori of regular orbits and the onset of chaos depend on the nuclear
phase. The regular and chaotic motions are analyzed in terms of Poincare´ sections and the largest Lyapunov
exponent.@S1063-651X~96!10309-3#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Many achievements of nuclear many-body formalisms
such as the time-dependent Hartree-Fock formalism, the
BCS treatment of the pairing interactions, the random-phase
approximation~RPA!, and boson expansion methods have a
classical origin@1–9#. Indeed, the solutions for a stationary
eigenvalue problem associated with an approximated many-
body Hamiltonian can be obtained at the classical level by
solving a set of time-dependent variational principle equa-
tions. Sometimes the quantal results obtained by some ap-
proximate procedures may be improved by the requantiza-
tion of the classical motion. In general, results allowing for a
correspondence of quantal and classical features have been a
most attractive goal for physicists working in this field.

Alternatively, the nuclear structure and dynamics can be
described by treating only a few degrees of freedom of col-
lective character. Such a concept was introduced by Bohr
and Mottelson@10# by quantizing the classical motion of the
harmonic liquid drop~LD!. Although the LD model is very
successful in many conceptual respects, it is not able to de-
scribe the full picture for the quadrupole collective motion.
Indeed, there are plenty of data whose interpretation is pos-
sible only by going beyond the harmonic picture. This stimu-
lated alternative formalisms dealing with highly anharmonic
terms in the model Hamiltonian. Here we enumerate only
few of the attempts that contributed to a deeper understand-
ing of nuclear structure in terms of boson degrees of free-
dom: the vibration-rotation~VR! model @11#, the Greiner-
Gneus model@12#, the interacting boson approximation
~IBA ! @13#, and the coherent state model~CSM! @14#.

In contrast to the LD and VR models, which are classi-
cally motivated, some of these nuclear models, such as the
IBA, are of quantum origin. This has led to explorations of
the classical limits through a dequantisation procedure. For
example, the classical limit@15# of the IBA model has been
studied by several authors@16–23#. In this way it was pos-
sible to describe not only the static properties, corresponding
to various symmetries, but also the excited states by quantiz-
ing the classical motion. Moreover, at the classical level, the
connection between different quantal approaches@24# can be
established. To give an example, the IBA model yields, in

the classical limit, the geometrical model@16,20,22,21#.
In a previous paper@25# we initiated the study of classical

properties of a fourth-order quadrupole boson Hamiltonian.
We were interested in several aspects:~a! static features,~b!
RPA-like equations for quadrupole intrinsic degrees of free-
dom, and~c! quantization of classical orbits. In another paper
@26# we proved that the ground state and the two RPA one-
phonon states are just the generating functions for the CSM
formalism. In this way, the CSM acquires a classical foun-
dation. Here we continue the project of the classical descrip-
tion of quadrupole degrees of freedom, pointing out possible
relations of various classical ‘‘phases’’~such as spherical,
deformed, andg unstable equilibrium shapes! and the onset
of chaos. We address the question whether the onset of chaos
carries any ‘‘fingerprint’’ of nuclear phases. Starting with an
integrable limit, deviations leading to various phases are pro-
duced by an order parameter that in fact, decides to what
extent the ‘‘order’’ and chaos share the phase space. The
classical features generated by nonlinear dynamics are de-
scribed in terms of Poincare´ sections and the largest
Lyapunov exponent@27–34#. Corresponding quantal aspects,
such as Poisson versus Wigner distribution laws@35–39# for
level energies statistics, are postponed to a future paper.

The article is outlined as follows. The model Hamiltonian
is treated through a time-dependent variational principle for-
malism in Sec. II. Here we also describe the static properties
as well as the RPA-like solutions of the classical equations
of motion. The regular and chaotic orbits are analyzed in
terms of Poincare´ sections in Sec. III. A possible interpreta-
tion of the onset of chaos as being caused by an interfering
effect of several resonances is presented. The maximal
Lyapunov exponent is calculated for various nuclear
‘‘phases’’ as a function of classical energy and order param-
eters in Sec. IV. The final conclusions are drawn in Sec. V.

II. THE MODEL BOSON HAMILTONIAN AND ITS TDVP
TREATMENT

Here we shall investigate some semiclassical features of a
particular fourth-order quadrupole boson Hamiltonian
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The quadrupole bosons are denoted bybm
1 with

22<m<2. The coefficientsAm with 1<m<4 are consid-
ered to be free parameters.

The Hamiltonian~2.1! differs from that used in a previous
publication@25# in that Eq.~2.1! includes an additional term
multiplied byA2. As shown later on, this term is necessary to
approachg unstable regimes. We study this Hamiltonian
since it is the simplest fourth-order boson Hamiltonian~i.e.,
with a minimal number of parameters! that enables a full
description of various nuclear equilibrium shapes. This as-
sertion becomes obvious by writingH in terms of quadru-
pole shape coordinatesa and their conjugate momentap.
This is done in the Appendix. From there one notes thatH
does not contain coordinate-momentum coupling terms.
Also, the fourth-order terms in momenta are missing. Of
course, the classical picture is changed if one takes another
boson Hamiltonian. Also for a realistic description of nuclear
spectra a more complex boson Hamiltonian is necessary.
However, the simple structure ofH suits the purpose of this
work, i.e., to investigate the dependence of chaos onset on
nuclear phases. Moreover, among parameters definingH,
there is an order parameterB that describes the transition
from order to chaos.

Some properties ofH can be obtained by solving the
equations of motion derived from a time-dependent varia-
tional principle~hereafter the units\51 will be used!

dE
0

t K cUH2 i
]

]t8
Uc L dt850. ~2.2!

If the variational statesuc& span the whole boson space,
solving Eq.~2.2! is equivalent to solving the time-dependent
Schrödinger equation. Since this is not possible in practice,
we chose as the variational function, the coherent state

uc&5exp@z0b0
12z0* b01z2~b2

11b22
1 !2z2* ~b21b22!#u0&,

~2.3!

whereu0& is the vacuum state for the quadrupole bosons and
zm(m50,2) are complex functions of time. The correspond-
ing complex conjugate variables are denoted byzm* . The set
of functionszm ,zm* defines four-dimensional classical phase-
space coordinates. The motivation for choosing such a trial
function as well as the set of properties ofH that might be
described in this restricted space are given in Ref.@25#. The
time-dependent treatment has the advantage, over the sta-
tionary ones, that besides the static properties, information
about the dynamics of collective motion is obtained.

In order to fix the notations, the formalism of Ref.@25#
will be reviewed briefly. In terms of the realum and imagi-
nary vm components of the phase-space coordinates

zm5um1 ivm , zm*5um2 ivm , ~2.4!

the equations of motions read
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whereH denotes the classical energy function defined as the
expected value ofH:

H[^cuHuc&5A8~v0
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212u2
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The factorsA,A8,B,D are related to the coefficientsAm in
the HamiltonianH by the expressions

A5
1

A5
~A112A2!, A85

1

A5
~A122A2!, B5

16

A35
A3 ,
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5

4
A4 . ~2.7!

It can be easily checked that the 2(21m)/4(um ,vm) with
m50,2 are canonically conjugate coordinates, i.e., their
equations of motion are of Hamiltonian type, withA2v0 and
2v2 taken as linear momenta.

The explicit form of Eqs.~2.5! are

u̇05A8v0 ,

v̇052~Au016Bu2
223Bu0

212Du0
314Du0u2

2!,

u̇25A8v2 ,

v̇252~Au216Bu0u214Du2
312Du0

2u2!. ~2.8!

Note thatH is a constant of motion

H5const. ~2.9!

Equation~2.9! defines the energy surfaceS of classical dy-
namics. Stationary points of the energy surface are particular
solutions of Eqs.~2.5!. Moreover, some of these are energy
minima.

Equations~2.8! are highly nonlinear and therefore only
numerical solutions are possible. However, trajectories lying
close to a given minimum point might be reasonably well
described by the linearized equations of motion, which are
obtained by expanding the right-hand side of~2.8! around
that point and retaining only the linear terms. The resulting
equations are nothing else but the RPA equations for the
intrinsic quadrupole boson degrees of freedom. The station-
ary points and RPA solutions are described in Secs. II A and
II B, respectively, while the following subsection is devoted
to some classes of exact numerical solutions.
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A. Static solution

Without any loss of generality we can confine our consid-
erations to the cases

uAu5A851. ~2.10!

In what follows the two solutions of this equation are con-
sidered separately.

~1! The parametersA andA8 are equal:

A85A51. ~2.11!

If the remaining parametersB andD satisfy the equation

9B228AD<0, ~2.12!

the energy surface has only one stationary point and this is a
minimum whose energy is equal to zero irrespective of val-
ues taken byB andD. The corresponding state describes a
spherical shape. When the relation~2.12! is not obeyed, be-
sides the spherical minimum, another six stationary points
exist: three saddle points and three minima. Any of these six
stationary points define a deformed shape. Classical states
corresponding to these minima are degenerate. Saddle points
are characterized by the same energy. These situations are
synthesized in Fig. 1~a!, where the parabolaD5 9

8B
2 and

abscissaD50 determine three distinct phases: two deformed
ones~II and III! and a spherical one~I!. In region II, only
prolate shapes appear, while in region III oblate shapes are
obtainable.

The relative positions of spherical and deformed minima
depend on sgn(B22D). Thus the parabolaD5B2 deter-
mines two regions labeled~i! and ~ii !. In domain ~i!, the
spherical minimum corresponds to an energy that is smaller
than that determined by the deformed minimum, while in the
region~ii ! the two energies ordering is opposite. On the bor-
derD5B2, the two minima are degenerate. In Fig. 2~a!, for
a fixed value ofu2 (50), the potential energies correspond-
ing to the pointsP1,P2,P3 specified in Fig. 1~a! are plotted
as functions ofu0, respectively.

~2! The parametersA8 andA have opposite signs:

A852A51. ~2.13!

The phase diagram for this case is plotted in Fig. 1~b!. When
BÞ0 there are seven stationary points: a maximum~the ori-
gin!, three saddle points, and three deformed minima. For
B.0, the corresponding shapes are of prolate type, while for
B,0, the nuclear system exhibits an oblate shape. When
B50, a g-unstable regime is reached. Indeed, the classical
energy has the ellipse

b2[u0
212u2

25
2A

2D
, ~2.14!

FIG. 1. ~a! ParabolaD5
9
8B

2 ~full line! and abscissa axis define
three regions, in the upper planeD>0, which are labeled as fol-
lows: I, in any point of this region, the potential energy has only
one minimum that is spherical; II, there are two minima, one spheri-
cal and one deformed prolate; III, there are two minima, one spheri-
cal and one deformed oblate. Regions II and III are cut in two
pieces by the parabolaD5B2 ~dashed line!: ~i! The spherical mini-
mum is higher than the deformed one.~ii ! The spherical minimum
is lower than the deformed one.~b! Phase diagram for
A52A851. In the sectorD>0, B.0 there are three prolate
minima for the potential energy, while forD>0,B,0 the potential
energy has three oblate minima.

FIG. 2. ~a! For A5A851 a sectionu250 of energy surface is
plotted as a function ofB. For B50.5 there is only one spherical
minimum. ForB50.632 there are two degenerate minima, while
for B50.8 the deformed minimum is lower than the spherical one.
~b! ForA52A851 a sectionu250 of energy surfaces is shown as
a function ofu0 for three values ofB. The right minima are also
minima for the energy surface, while the left minima are saddle
points forBÞ0 and oblate minima forB50.
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as a continuous degenerate minimum. Here, like in Ref. 15,
the following relation between phase space coordinates and
nuclear deformations is used:

u05bcosg, u25
1

A2
bsing. ~2.15!

In Fig. 2~b! the energy surfaces, corresponding to three dis-
tinct values for the~D,B!-parameters, are sectioned by the
planeu250. The resulting curves have two minima and one
maximum. It is worth noting that ag unstable situation is
characterized by a prolate-oblate shape coexistence. More-
over, the potential energy does not depend ong. For BÞ0,
the left-hand side minima, shown in Fig. 2~b!, are saddle
points for the energy function.

B. The RPA treatment

The equations of motion~2.8! can be easily linearized by
expanding their right-hand side around a deformed mini-
mum. For the sake of simplicity, here we consider an axially
deformed equilibrium shape described by the coordinate
ů0. As shown in Ref.@25#, the linearized equations have two
solutions describingb- and g-like oscillations. The corre-
sponding energies have the expressions

v05@A8~A26Bů016Dů0
2!#1/2,

v25@A8~A16Bů012D2!#1/2. ~2.16!

Taking into account the explicit expression ofů0 @15#, one
finds a very simple equation for these energies:

v2
223v0

256AA8. ~2.17!

Hence, forg stable nuclei, whereAA8.1, the following
ordering equation holds:

v2.v0 . ~2.18!
When AA8,0 and B50, a g unstable situation is

reached. The potential energy does not depend ong and
therefore the ‘‘g oscillation’’ becomes spurious, which re-
flects, in fact, the existence of a constant of motion

fg5const, ~2.19!

with fg the conjugate momentum ofg. Moreover, for

2AA8.
v0
2

3
, ~2.20!

the ordering relation~2.18! is changed, i.e.,

v2,v0 . ~2.21!

III. REGULAR AND CHAOTIC FEATURES

In this section we shall analyze the classical trajectories
satisfying the exact equations of motion~2.8!. In the preced-
ing section, two distinct classes of stationary points charac-
terized by Eqs.~2.11! and ~2.13! respectively, were consid-
ered. In both cases, the system is integrable ifB50. Indeed,
there are two constants of motion:H andwg . By means of a

canonical transformation one can always choose two pairs of
polar radii and angles as conjugate coordinates. Hence, such
a system evolves on trajectories lying on a torus. These tra-
jectories are conventionally called regular.

For B50 it can be easily checked that up to a multipli-
cative constant the constant of motion~2.19! is given by

fg5A2~u0v22u2v0!. ~3.1!

To what symmetry does this constant of motion correspond?
To answer this question we note that the present procedure
describes the intrinsic motion of the quadrupole degrees of
freedom that span a two-dimensional space. Therefore, our
problem is equivalent to that of two interacting oscillators
system. The mapping of the boson operators onto the oscil-
lator creation operators is achieved by

ax
15b0

1 , ay
15

b2
11b22

1

A2
. ~3.2!

Some time ago, a schematic model consisting of a two-
dimensional oscillator potential plus a spin-orbit term, the
mean field, and a special quadrupole-quadrupole interaction
was proposed by Moszkowski in Ref.@40#. By varying con-
tinuously the relative strengths of spin-orbit and quadrupole-
quadrupole interactions, the interplay between single-particle
and collective features has been studied. Although the mo-
tion is taking place in a plane, this schematic model is able to
simulate many predictions of realistic models. This is pos-
sible since the symmetry group isR3, describing rotations in
a fictitious three-dimensional space and having

Tx5
1

2
~ax

1ax2ay
1ay!,

Ty5
1

2
~ax

1ay1ay
1ax!,

Tz5
1

2i
~ax

1ay2ay
1ax! ~3.3!

as generators. Since the classical Hamiltonian describes a
planar motion, theR3 group and its subgroups might be
good candidates for investigating its symmetries. Indeed, it is
worth noting thatfg is just the expected value ofTz :

fg5^cuTzuc&. ~3.4!

This reflects the fact that forB50, the commutation relation

@H,Tz#50 ~3.5!

holds for the quantal system. Therefore the constant of mo-
tion fg corresponds to the invariance ofH to the rotation
aroundz axis in a fictitious space.

ForBÞ0, the symmetry corresponding to the constant of
motionfg is broken and moreover there is no new symmetry
replacing it. Consequently, the system becomes non-
integrable. Such a system is moving on trajectories that are
very sensitive to any small change of initial conditions. Be-
cause of that the motion may acquire a chaotic behavior. A
good signature for regular and chaotic trajectories are their
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intersections with the surface of Poincare´ section defined as
follows. Consider the system initial position at the point
P(u0

( i ) ,v0
( i ).0,u2

( i ) ,v2
( i )) with v0 chosen positive and so that

PPS, whereS is defined by~2.9!. The equations of motion
provide the solution for the classical orbit

u05u0~ t !, v05v0~ t !, u25u2~ t !, v25v2~ t !.
~3.6!

We record the times

t0<t1<t2<•••<••• ~3.7!

when the conditions

u0~ t !5u0
~ i ! , v0~ t !>0, H5E ~3.8!

are fulfilled. Fort5tk the trajectory passes through the plane
(u2 ,v2) at the pointPk5„u2(tk),v2(tk)…. For a regular orbit,
the Pk are distributed sequentially on a closed curve, while
for a chaotic orbit, the pointsPk fill densely and randomly a
certain region of the plane.

Now let us first consider the case ofA5A851,
B50.8,D50.4, and three energy surfaces corresponding to
E50.025,0.05, and 0.07 MeV. In all cases, the surface of
section is defined by the restrictions

u050, v0.0, H5E. ~3.9!

The results are plotted in Figs. 3~a!–3~c!, respectively, for
several initial conditions. The saddle point energy is
Es50.075 MeV. As shown in Fig. 3~a!, when the energy
value is far away fromEs the trajectories are regular. By
contrast, when the energy approaches the saddle point value
the chaos appears. The closer the energy is to the saddle
point, the larger the volume of the phase space filled with
chaotic orbits. This conclusion hinges on the comparison of
Figs. 3~b! and 3~c!. In each of the three situations mentioned
above, the motion takes place around the
spherical minimumof the energy surface.

Keeping the same parametersA,A8,B,D as before, con-
sider the motion in the potential well corresponding to the
deformed minimumshown in Fig. 2~a!. In Figs. 3~d! and
3~e! the Poincare´ surface of section defined by

u052.5, v0.0, H5E, ~3.10!

with E50.0 and 0.95, respectively, is shown. When the
value of E is smaller than that of the saddle point energy
Es , all trajectories are regular. ForE.Es chaotic trajecto-
ries, surrounding several minima of the energy surface may
appear. IfE.Es and initial conditions are chosen so that the
trajectory encircles only one minimum, the motion is still
regular. Finally, we note that there are portions on the energy
surface where a regular motion exists, irrespective of the
value of E. This might suggest that even for the situation
whenBÞ0 there exists a second constant of motion.

Note that whenBÞ0 the third-order boson term is acti-
vated and consequently a classical cubic term in coordinates
appears. Moreover, the expression of this new term is iden-
tical to the cubic term appearing in the He´non-Heiles Hamil-
tonian@41#. Therefore the answer to the question whether an
additional constant of motion exists forBÞ0 ~already given

in Ref. @41#! is ‘‘no,’’ i.e., the system is not integrable. This
suggests that the class of regular orbits defined by means of
the Poincare´ surface of sections is larger than that of orbits
characterizing integrable systems.

To answer the question how the chaos settles in this case,
we invoke here the arguments given in Ref.@31#, where the
transition from regular to chaotic regime is attributed to the
Hamiltonian amplitude instability, which, in fact, is pre-
dicted by the Kolmogorov-Arnold-Moser theorem@42–44#.
Indeed theB50 Hamiltonian may be expressed in terms of
two action variables canonically related to the two constants
of motion. The third-order term can be expressed as a Fou-
rier series with the general term of the type cos(mf1
1nf2), wheref1 andf2 are the angles conjugate to the
two actions, respectively. Increasing the energy, several reso-
nant terms depending on frequencies may appear and favor
the distortion or even the destruction of some tori. In this
case, the space that was previously occupied by tori is filled
now randomly by chaotic trajectories.

Let us analyze now the behavior of the classical trajecto-
ries when 2A5A851,B50.2,andD50.4. The corre-
sponding potential energy is that represented in Fig. 2~b! by
the dashed line. From there it is obvious that such a situation
is close to ag unstablepicture. The saddle point energy, for
this case, is20.27 MeV and the depth of the secondary well
is 21.58 MeV. In Figs. 3~f!, 3~g!, and 3~h! the Poincare´
surface of sections

v0>0, H5E, ~3.11!

with E520.3,0.0, and 1.0 MeV and
u051.25,0.0, and 0.0, respectively, are plotted. Note that
below the saddle point@Fig. 3~f!#, the classical motion is
again regular. Above the saddle point, two effects are to be
noted. One is the distortion of the tori and another one is the
appearance of the chaotic motion. Moreover, the chaotic
phase-space volume is an increasing function of energy.

Figure 3~a! indicates that trajectories associated with the
motion around the spherical minimum of the surface energy
encircle five stable periodic trajectories that prick the section
plane in the fixed elliptic points of the Poincare´ mapping. By
contrast, for the case corresponding to the deformed mini-
mum, according to the Fig. 3~d!, a single elliptic point exists.

The situation described in Fig. 3~f!, which deviates only
slightly from a g unstable picture, exhibits two elliptic
points, each of them being surrounded by another three sat-
ellitelike elliptic points reflecting the presence of active reso-
nating terms in the classical Hamiltonian. A common prop-
erty of all Poincare´ sections presented above consists of their
invariance with respect to the transformation (u2 ,v2)
→(2u2 ,2v2). Obviously this feature is inherited from the
classical energy functionH. Although in Fig. 3~a! the un-
stable trajectories fill a phase-space volume equal to zero
~within the computer errors! the curves’ distortion reveals the
incipient stage of a resonant structure for the nonintegrable
system. From Fig. 3~b! one sees that the chaos is accompa-
nied by two effects:~a! the decrease of the number of the
regular orbits encircling the stable trajectories and~b! some
satellite islands appearing in the vicinity of stable trajecto-
ries. These islands reflect the presence of high-order reso-
nances. The fact that for some parameters and energy, order
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FIG. 3. ~a! Poincare´ surface section defined by the equationsu050, v0>0, andH50.025 MeV. The parameters involved in the model
Hamiltonian areA5A851, B50.8, andD50.4. ~b! Poincare´ surface section defined by the equationsu050, v0>0, andH50.05 MeV.
The Hamiltonian parameters are the same as in~a!. ~c! Poincare´ surface section defined byu050, v0>0, andH50.07 MeV. The
Hamiltonian parameters are the same as in~a!. ~d! Poincare´ surface section defined byu052.5, v0>0, andH50. The Hamiltonian
parameters are the same as in~a!. ~e! Same as in~d!, butH 5 0.95 MeV.~f! Poincare´ surface of section defined byu051.25, v0>0, and
H520.3 MeV. The Hamiltonian parameters were taken as2A5A851, B50.2, andD50.4 MeV. ~g! Same as in~f!, but u050 and
H 5 0 MeV. ~h! Same as in~f!, but u050 andH 5 1 MeV.
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and chaos share the phase space suggests that for the corre-
sponding quantal system the energy spacings obey a law that
is intermediary to the Poisson and Wigner distributions@38#.
It is fair to say that the motion of our nuclear system around
spherical, deformed, andg unstable equilibrium shapes have
Poincare´ sections that are topologically distinct.

IV. LYAPUNOV EXPONENTS

In this section we study the orbits’ character, regular or
chaotic, from a different point of view, namely, by calculat-
ing the largest Lyapunov exponent, hereafter denoted by
lmax. The regular orbits are characterized bylmax'0, while
lmax.0 indicates a chaotic trajectory. The largest Lyapunov
exponents for three phases—spherical, deformed prolate, and
g unstable—are presented and some specific features are
pointed out. For an orbit surrounding the
spherical minimumshown in Fig. 2~a!, we plotted, in Fig.
4~a!, the largest Lyapunov exponent as a function of energy
~the value of the constant of motionH) for two values of
B. As we have already seen, this controls the transition be-
tween different phases~spherical deformed andg unstable
deformed!. These values areB50.5, for which the potential
energy has only one minimum, andB50.632, when the po-
tential energy exhibits two minima. The remaining parameter
D is taken to be equal to 0.4. To calculatelmax, the method
described in Refs.@28, 30# was used.

One notes thatlmax is an increasing function ofB. This
means that for a given energy, the largerB is, the larger the
chaotic volume of phase space. It is worth noting that the
slopes of the two functions, shown in Fig. 4~a!, have a jump
for an energy value equal to the saddle point energyEs
~50.075 MeV!. While for E,Es the slope is very large,
indicating a rapid growth of chaos with energy, forE.Es ,
lmax is slowly increasing with energy, suggesting that the
chaos occupies almost the whole phase-space volume. In
Figs. 5~a! and 5~b! for two values of excitation energy~with
respect to the lowest minimum!, theB dependence oflmax is
studied. Three common features of these figures are to be
mentioned.~i! For small values ofB, lmax is small. Obvi-
ously this is a reminiscence of theB50 case, when the sys-
tem is integrable. AtB50.2 MeV the slope jumps to a larger
value, showing a rapid development of the chaos, reaching a
plateau atB50.44 MeV that lasts until the valueB50.59
MeV. ~ii ! Starting withB50.59 MeV@which marks the tran-
sition from the situation when the potential energy has only
one ~spherical! minimum to that with two minima
(one spherical and one deformed)#, the slope of lmax
jumps to a larger value.~iii ! The third common property is
the discontinuity of thelmax for B50.8. This indicates a
transition from a chaotic to a regular regime and is caused by
the fact the orbit is trapped by the well of the deformed
minimum. This critical value ofB is larger for larger values
of excitation energy.

Now let us consider the case of2A5A851, which al-
lows, by changingB, the study of theprolate-oblate transi-
tion through ag unstable regime. In Figs. 4~b!–4~d! we plot-
tedlmax as a function of energy, for three values ofB. When
B is large there is a tendency for a plateau that reflects a
saturation effect indicating that the distance between the cho-
sen orbits approaches the maximum value allowed by the

FIG. 4. ~a! Largest Lyapunov exponent plotted as a function of
classical energy, for two values ofB. The parameterD is taken to
be equal to 0.4, whileA andA8 are equal to 1.~b! lmax is plotted as
a function of energy for a fixed set of parameters2A5A8
51,B50.2, andD50.4. ~c! Same as in~b!, but B50.3. ~d! Same
as in ~b!, butB50.4.
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finite size of the phase space. For two excitation energies,
lmax is plotted versusB in Figs. 5~c! and 5~d!. The largest
Lyapunov exponent has a local minimum forB50.14 and a
global maximum inB50.25 forEx53 MeV andB50.325
for Ex55 MeV. ForEx53 MeV a sharp transition from a
chaotic to a regular regime takes place atB50.325. Such a
transition is reached more slowly forEx55 MeV. Compar-
ing Figs. 5~c! and 5~d! and Figs. 5~a! and 5~b!, respectively,
we note that in the former case the transition to the regular
regime is reached for smaller value ofB.

V. CONCLUSION

We have studied the classical static and dynamic features
of a particular fourth-order boson Hamiltonian. The coupling
of coordinates and momenta was ignored. Only kinetic en-
ergy terms that are quadratic in momenta are considered. The
cases when the crossover term (A250) and harmonic term
(A150) are missing were treated separately. These Hamil-
tonians allow for the description of various equilibrium

shape phase transitions such as spherical-prolate, spherical-
oblate, and prolate-oblate via ag unstable regime, respec-
tively, by a smooth variation of an order parameterB ~which
multiplies the cubic term!. We studied the onset of chaos for
each of these phases. We found that forB50, the system
was integrable and therefore the classical motion is regular.
Although the classical Hamiltonian contains fourth-order
terms, an analytical solution for the second constant of mo-
tion ~the first one being the energy! was possible. This cor-
responds to the symmetry expressing the classical Hamilto-
nian’s invariance against rotations around an axis
perpendicular to the plane (u0 ,u2).

For BÞ0 the chaos onset was studied in terms of Poin-
carésections. The surface of section comprises the points of
trajectories belonging to the plane (u2 ,v2) for a fixed value
of u0 andv0>0. For every phase one finds a specific set of
stable and periodic orbits encircled by tori of regular orbits.
Also the resonances appearing in the amplitudes of the
angle-dependent terms of the classical Hamiltonian, ex-
pressed as a function of action-angle pairs of conjugate vari-
ables, are different for different phases. Such resonances are
accompanied by some tori destruction and chaos onset. The
volume in the phase space that is governed by chaos depends
on both the energy and order parameterB. For a given en-
ergy, the motion amplitude plays a decisive role in determin-
ing the character of the given orbit. To be more concrete, the
trajectory is regular even for an energy larger than the saddle
point energy if the initial conditions are so that the motion
takes place around the deepest minimum. By contrast, if the
orbit surrounds several energy surface minima, i.e., the mo-
tion amplitude is large, its chaotic character prevails. Global
information about the distribution of the chaos and order in
phase space given by the largest Lyapunov exponent was
found to be consistent with our Poincare´ sections.

Before closing, we would like to mention that a similar
study in the IBA Hamiltonian was performed@32#. By con-
trast, our model Hamiltonian does not involve thes boson
and does not conserve the number of bosons. If the terms of
third order are missing, the system is integrable even though
it contains high anharmonic terms, including some that do
not commute with the boson number operator. In our case
the order parameter isB ~ the strength of cubic terms!, while
for the IBA Hamiltonian, the parameterx, the strength of the
anharmonic quadrupole moment, dictates the transitions be-
tween different phases. While in Ref.@32# the analysis of
chaos and order is confined to Lyapunov exponents, here we
have also studied the Poincare´ sections that give information
about the local structure~chaos and order! of the phase space
as well as about the dynamic of developing the chaos and
destroying the order. In Ref.@32# the plot of Poincare´ sec-
tions was not possible since the classical treatment accounts
for all six degrees of freedom. However, by using a Monte
Carlo procedure, the authors calculated the volume of the
phase space occupied by chaos. A classical Hamiltonian de-
pending on theb andg nuclear deformations has been stud-
ied in Ref. @33#, where their criterion for the onset of the
chaotic motion was the negative curvature of the potential-
energy surface. However, this only characterizes the local
instabilities and is not suited for the behavior of trajectories
surrounding two local minima. Finally, one may say that the

FIG. 5. Largest Lyapunov exponent plotted as a function ofB
for two values of the excitation energy:~a! Ex53 MeV, and ~b!
Ex55 MeV. The remaining parameters are the same as in Fig. 4~a!.
~c! lmax is plotted as a function ofB for an excitation energy
Ex53 MeV. The coefficients of the model Hamiltonian are
2A5A851, andD50.4. ~d! Same as in~c!, butEx55 MeV.

54 3271REGULAR AND IRREGULAR FEATURES OF CLASSICAL . . .



present paper provides a full picture of the competition be-
tween chaos and order for a nonintegrable system of two
degrees of freedom that corresponds to a fourth-order quad-
rupole boson Hamiltonian describing the nuclear surface mo-
tion. These features are important for a realistic description
of the coupling between surface fluctuations and other de-
grees of freedom in highly excited nuclei.

APPENDIX

In terms of quadrupole coordinates and conjugate mo-
menta

am5
1

A2
@bm

11~2 !mb2m#,

pm5
i

A2
@~21!mb2m

1 2bm#, 22<m<2, ~A1!

the model Hamiltonian has the expression

H5A1B~pp!01C~aa!01D3~aaa!01D4~aa!0~aa!0 .
~A2!

The coefficientsA,B,C,D3 ,D4 are related to those defining
the boson Hamiltonian by

A5
5

2 S A42
1

A5
A1D , B5

1

2
~A122A2!,

C5
1

2
~A11A2!2

7

A5
A4 , D352A2A3 , D45A4 .
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